Bayesian inverse problems with partial observations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Nonnegative inverse eigenvalue problems with partial eigendata
In this paper we consider the inverse problem of constructing an n-by-n real nonnegative matrix A from the prescribed partial eigendata. We first give the solvability conditions for the inverse problem without the nonnegative constraint and then discuss the associated best approximation problem. To find a nonnegative solution, we reformulate the inverse problem as a monotone complementarity pro...
متن کاملBayesian analysis in inverse problems
In this paper, we consider some statistical aspects of inverse problems. using Bayesian analysis, particularly estimation and hypothesis-testing questions for parameterdependent differential equations. We relate Bayesian maximum likelihood Io Tikhonw regularization. and we apply the expectatian-minimization (F-M) algorithm to the problem of setting regularization levels. Further, we compare Bay...
متن کاملInverse problems: A Bayesian perspective
ion is not needed. Inverse problems 531 Theorem 6.13. Two Gaussian measures μi = N (mi, Ci), i = 1, 2, on a Hilbert space H are either singular or equivalent. They are equivalent if and only if the following three conditions hold: (i) Im(C 1 ) = Im(C 1/2 2 ) := E, (ii) m1 −m2 ∈ E, (iii) the operator T := ( C−1/2 1 C 1/2 2 )( C−1/2 1 C 1/2 2 )∗ − I is Hilbert–Schmidt in E. In particular, choosin...
متن کاملSolving inverse problem of Markov chain with partial observations
The Markov chain is a convenient tool to represent the dynamics of complex systems such as traffic and social systems, where probabilistic transition takes place between internal states. A Markov chain is characterized by initial-state probabilities and a state-transition probability matrix. In the traditional setting, a major goal is to study properties of a Markov chain when those probabiliti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of A. Razmadze Mathematical Institute
سال: 2018
ISSN: 2346-8092
DOI: 10.1016/j.trmi.2018.09.002